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Internal Symmetry of Hadrons: Finsler 
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The microlocal space of hadronic matter extension has recently been characterized 
as a Finsler space. This consideration of hadrons extended as composites of 
constituents can give rise to a dynamical theory of hadrons. The macrospaces, 
the space-time of common experience (the Minkowski flat space-time) and the 
Robertson-Walker background space-time of the universe, are found to appear 
as the "averaged" space-times of the Finsler space that describes the anisotropic 
nature of the microdomain of hadrons. From the assumed property of the fields 
of the constituents in the microspace it is possible to find the field (or wave) 
equations of the particles (or constituents) through the quantization of space-time 
at small distances (to an order of or less than a fundamental length). If the field 
(or wave) function is separable in the functions of the coordinates of the underlying 
manifold and the directional arguments of the Finsler space, then the former part 
of the field function is found to satisfy the Dirac equation in the Minkowski 
space-time or in the Robertson-Walker space-time according to the nature of the 
underlying manifold. In the course of finding a solution for the other part of the 
field function a relation between the mass of the particle and a parameter in the 
metric of the space-time has been obtained as a byproduct. This mass relation 
has cosmological implications and is relevant in the very early stage of the 
evolution of the universe. In fact, it has been shown elsewhere that the universe 
might have originated from a nonsingular origin with entropy and matter creations 
that can account for the observed photon-to-baryon ratio and total particle number 
of the present universe. The equations in the directional arguments for the 
constituents in the hadron configuration are found here and give rise to an 
additional quantum number in the form of an "internal" helicity that can generate 
the internal symmetry of hadron if one incorporates the arguments of Budini in 
generating the internal isospin algebra from the conformal reflection group. This 
consideration can also account for the meson-baryon mass differences. 

1. I N T R O D U C T I O N  

H a d r o n s  h a v e  r e c e n t l y  b e e n  c o n s i d e r e d  as  e x t e n d e d  o b j e c t s  in  a m i c r o l o -  

ca l  a n i s o t r o p i c  s p a c e - t i m e  (De ,  1 9 8 6 a , b ,  1989 ,  1991) .  T h i s  a n i s o t r o p i c  m i c r o -  
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domain of hadronic matter extension has been characterized as Finslerian in 
nature. The motivation behind such considerations is to accomplish a space- 
time formulation of the internal symmetry of hadrons. Apart from this, it is 
also necessary to provide a dynamical theory for the hadrons, and to this 
end, the hadronic particle states and fields have been constructed in the 
Finslerian inner space-time (the microdomain of hadronic matter extension). 
Consequently, it has been shown that in the field theory of hadrons the 
perturbation technique is applicable even in the strong interaction. Thus, the 
anisotropic character of this inner space-time is found to have a direct bearing 
in providing a consistent dynamics of the strong-interacting subatomic 
particles. 

The Minkowski flat space-time, the macrospace of common experience, 
has also been recovered from the microdomain which is manifested in the 
length scale of the order of or less than a fundamental length (De, 1989). 
Specifically, the metric of Minkowski space-time can be obtained by a pre- 
scribed "averaging" on the metric of the Finsler space. Also, the field (or 
wave) equation in this anisotropic Finsler space has been derived from the 
assumed property of the field (or wave) functions and by space-time quantiza- 
tion at very small distances. It is shown there that if the field (or wave) 
function is separable in the functions of the coordinates of the underlying 
manifold and the directional arguments of the Finsler space, then the former 
function satisfies the usual Dirac equation in the Minkowski space-time. 

The Dirac equation in the curved space-time, particularly for the Robert- 
son-Walker (RW) background space-time of the universe, has also been 
derived (De, 1991). Moreover, it is possible to resurrect the RW metric that 
describes the large-scale structure of the universe from the more general 
metric of the microdomain. The equation satisfied by the other part of the 
field (or wave) function, which depends on the directional variables, has 
been solved. An important relation between the mass of the elementary particle 
and a parameter characterizing the metric tensor has also been obtained as 
a byproduct. In terms of the RW metric, that is, in the context of the evolution 
of the universe, the mass of the particle is found to have two distinct parts, 
one independent of time and the other "epoch-dependent." Of course, the 
latter part may be zero for some species of particles and for the constituent 
particles in the hadron configuration. This mass relation has cosmological 
consequences and in fact it was shown (De, 1993a) that the universe can 
have a nonsingular origin with matter and entropy productions in its very 
early stage of evolution. The matter and entropy productions were considered 
in the framework of thermodynamically open universe originally proposed 
by Prigogine (1989) with the incorporation of this mass relation. This phenom- 
enological approach was also supplemented by a quantum mechanical consid- 
eration for the creation of matter in the Planck-era time. The totality of the 
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produced particles and the photon-to-baryon number ratio as calculated in 
these approaches were seen to be in good agreement with the observational 
data. In addition to the consideration of the nonsingular origin of the universe 
from anisotropic perturbation of the Minkowski fiat space-time, it is also 
argued (De, 1995) that the cosmological constant problem can be resolved 
if one adopts the changing gravity approach (Weinberg, 1989). 

Besides discussing further the nature of Finsler space of hadronic matter 
extension, the deductions of the field (or wave) equation in that space, and 
the Dirac equation in RW space-time, the present consideration will focus 
on the generation of an extra quantum number, the "internar' helicity of 
hadron constituents. This, in turn, can give rise to the internal symmetry of 
hadrons if one takes into account the arguments of Budini (1979) and also 
subsequent discussions by Bandyopadhyay (1989). 

We begin in Section 2 with a recapitulation of previous work on Finsler 
space with the additional feature regarding this special space that describes 
hadronic matter extension. In Section 3 the general field (or wave) equation 
in Finsler space will be discussed. In Section 4 the separation of the wave 
(or field) function is made and consequently the Dirac equation in RW space- 
time together with the mass relation are established. In Section 5 the internal 
helicity for the constituents of hadrons is obtained. In Section 6, following 
Budini's approach, SU2 algebra (the internal isospin algebra) is generated 
and subsequently it is shown that the internal symmetry of hadrons can be 
obtained by incorporating this additional quantum number (internal helicity). 
This is followed by concluding remarks, particularly on meson-baryon 
mass differences. 

2. F I N S L E R  SPACE OF H A D R O N I C  M A T T E R  E X T E N S I O N  

Riemann (1854) suggested that the positive fourth root of a fourth-order 
differential form might serve as a metric function. The common property with 
the Riemannian quadratic form is that they are both positive, homogeneous of 
the first degree in the differentials, and also convex in the latter. Thus, the 
notion of distance between two neighboring points x i and x / + dx / can be 
generalized as given by a fundamental function ds = F(x ~, dx i) satisfying 
these three conditions. This program was in fact carried out by Finsler (1918) 
and subsequently developed by such mathematicians as Caftan (1934), Ber- 
wald (1941), Rund (1959), Matsumoto (1986), and Asanov (1985). More 
recently the theory of Finsler spaces has been applied in various branches 
of physics and biology (Antonelli et al., 1993). 

The fundamental function of the Finsler space, F(x/, d~), is positively 
homogeneous of degree one in dx i, i.e., 

F(x i, hdx/) = hF(x ~, d.P), h > 0 (2.1) 
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The second set of arguments is referred to as the directional arguments 
or variables. 

From this fundamental function a metric tensor can be defined as (Rund, 
1959; Asanov, 1985) 

g,j(x , : : )  _ 
2 O~ oxJ (2.2) 

Here the directional dependence is taken so as to be on the components ~i 
= d~ldt of a tangent vector to the manifold, namely, the one given by the 
curve x~(t). In general, it is defined for Finsler spaces that the fundamental 
functions F(x, y) depend on the directional arguments or variables yg which 
are tangent to the point x i. It should be noted that spaces are possible for 
which x and y are independent (Beil, 1989, 1992). In fact, Asanov et al. 
(1988) and Asanov and Kiselev (1988) have considered a theory of  gauge 
transformations in the context of Finsler space in which Finsler tangent 
vectors have been treated as independent variables attached to points in 
space-time. 

Blokhintsev (1978) pointed out that the distance element of ordinary 
Minkowski flat space-time or Lorentz space can be regarded as a particular 
homogeneous Finsler space in the sense that one can write ds = N~ d ~ ,  
where the vector N~ is a zeroth-order form in dx. This form is different for 
spacelike, timelike directions, and the light cone. In fact, there are three 
possible values N 2 = ~ 1 and 0. Thus, ds depends on the direction dx in the 
sense that the spacelike, timelike, and lightlike directions are distinguished. 
This concept was exploited for characterization of the microlocal domain of 
hadronic matter extension (De, 1989, 1991). The metric tensor g~v(dx) 
depends (apart from the dependence on the x variable) upon the direction 
dx and the line element of this Finsler space is given by 

ds 2 = F2(x, dx) = g~v(dx) dx ~ dx ~ (2.3) 

A particular Finsler space is given by 

gr = diag(1, - 1, - 1, - 1) for timelike directions 

= d iag( -1 ,  +1,  +1,  +1)  for spacelike directions 

In fact, the Finsler spaces of  this type are given by 

FZ(x, 1,) = "qijg(x)f(v)viv y (2.4) 

with g(x) = exp(-b~xk), (bkx~) n, or (1 + b~r~) n or similar physically relevant 
functions of the coordinates of the underlying manifold; and 

aqij = diag(1, - 1, - 1, - 1) 

f ( v )  = e(~'2)f(v) 
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, , 2  = _ 

E(V 2) = 1 for v 2 -- 0 

= - 1  for v 2 < 0 

In previous work (De, 1989, 1991) the anisotropy of hadronic matter exten- 
sion, which is manifested in the order of a length scale given by a fundamental 
length l, was characterized as Finslerian withf(v) = 1. For this Finsler space 
the fundamental function is given by 

F2(x, v) = giy(x, v)viv  j (2.5) 

gij(X,  ]P) : 'I~ijg(x)E.('ll~ 2) 

The metric tensor of this space, gij(x, v), is 

gij(x, v)  = gij(x, v)  + 4g(x)~(v2)'q~i~q~jv~v ~ (2.6) 

where ~(v 2) is the Dirac 8-function. 
The metric tensor of the Minkowski flat space-time and also that of the 

conformal space-time to the Minkowski space which corresponds to the 
RW space-time have been shown to appear through a prescribed averaging 
procedure on the metric tensor of the Finsler space. In De (1989) this procedure 
as the integration over the tangent space (v space) was performed by using 
weight functions or probability density functions (pdf) of some specific types 
that are complex functions. Here we consider the following real pdf: 

1 " " ~(V) = ~ 2  V2~(v2)e-8Oa"v02 ( 2 . 7 )  

The metric tensor for the macrospace can be found on integration over the 
tangent space with this weight function. It is given by 

= f gij(X, V)~,~(llP) d4v gij(X) 

= f gij (x, v)~(v) day 

= g(x)'qij ( 2 . 8 )  

If, for example, g(x) = exp[--bk(/)Xk], where the parameters bk(l) are functions 
of the fundamental length l such that bk(/) --> 0 as l ---> O, then g(x) ---> 1 as 
l ---> O. Thus, gu(x) becomes the metric tensor "q0 of the Minkowski flat 
space-time. 
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The RW background metric of the universe can also be deduced from 
the metric tensor given by (2.8) of the space-time conformal to the Minkowski 
space-time through a pure-time transformation if one takes 

g(x) = (1 + b0x~ n or (box~ with x0 = ct (2.9) 

Note that we have taken "qij to be of signature +2. On the other hand, if "qu 
has signature - 2  in equation (2,5), then we have to choose the pdf as 

~ ( V )  -- l lp2(pO)4~(v2)e_~ijv,vJ/2 (2.10) 
24-rr 2 

to arrive at the same result. This result shows that the underlying manifold 
of the Finsler space (the x space) represents macrospaces such as the RW 
space-time. 

Now, giJ(x, V) can be seen to be 

giJ(x, v) = ~Y(x, v) 
4~(V2)vivJ 

g(x) 

giJ(x, v) - "qije(v2) (2.11) 
g(x) 

Also, the following important relations hold for the Finsler space which we 
are considering: 

P)k viv k =  ~I~k lflv k = ~l~k lflv k (2.12) 

where P~k(X, V) and ~/~k(X, V) are the connection coefficients and Christoffel 
symbols of second kind, respectively. ~t~k are the Christoffel symbols of second 
kind as calculated from g0 and ~ij (these are not actually the metric tensors 
of the Finsler space, but are only related to them). Therefore, it is evident 
from (2.12) that the equation of an autoparallel curve or a geodesic in this 
Finsler space will be the same if one calculates it from ~/~k, that is, from g, ij 
and ~o. It should be noted that this is, in general, not true for other types of 
Finsler spaces. 

3. F IELD (WAVE) EQUATION IN FINSLER SPACE 

As mentioned above, we are considering hadrons as extended objects 
in a microdomain or inner space-time which is a four-dimensional manifold. 
This manifold is anisotropic and is characterized as a Finsler space which is 
manifested in the order of or less than the length scale of a fundamental 
length l. Also, the hadronic matter extension is manifested as a composite 
particle of constituents (maybe leptons or quarks). It was indeed suggested 
(Bandyopadhyay, 1984; De, 1986b) that they might be leptons like ix +, ix-, v~. 
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Now, we regard the field or wave functions of the constituents or particles 
as functions of  the line support element (x, v) of the Finsler space. Thus, 
�9 (x, v) is the wave (field) function in the Finsler space with metric tensor 
gij(x, v) and connection coefficients P~(x, v). The wave (field) equation for 
�9 (x, v) can be obtained if one admits the following two conjectures: 

1. An equivalent property to be satisfied by ~(x ,  v) along the neighboring 
points in the microdomain on the autoparallel curve, which is the curve whose 
tangent vectors result from each other by successive infinitesimal parallel 
displacements of  the type 

dv ~ = -P~,j(x, v)v h dxJ 

This property can be stated as 

~ = {~ (x  + dx ,  v + d r )  - ~(x ,  v)} ~ ~(x, v) 

(3.1) 

o r  

~ ( x  + dx, v + du) - xIt(x, v) = ~mc~(x, v) (3.2) 

Here the mass term m appears as the constant of  proportionality and may be 
regarded as the "inherent" mass of the particle. Also, e is a real parameter 
such that 0 < ~ --< 1. 

2. Quantization of  the differentials dx~ and hence also of  dye. This is 
achieved with the change of coordinate differentials dx~ by the finite operators 
A ~  = ieh,y~, where ~/~ (~ = 0, 1, 2, 3) are Dirac matrices which may be 
either flat-space or curved-space matrices according to the nature of the 
underlying manifold of  the Finsler space. This means that the underlying 
manifold /~4 is quantized at small distances. A similar quantization of  the 
space-time manifold of  small distances has been considered by Namsrai 
(1985). 

By the first conjecture it follows that 

(dx ~ O~ + dv t 0[)~(x,  v) = emc~(x,  v) (3.3) 

where 

O~ ---- O/Ox ~ and O~ = O/Or t 

Now, the second conjecture can be considered in two steps: 
1. The differentials dx ~ are quantized to 

d ~  = i~hT~(x) (3.4) 
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It should be noted here that we are considering the underlying manifold to 
be curved space-time. This procedure makes W(x, v) a spinor, i.e., 

lxt, l(x, v)) 
�9 2(x, v) 

0(x, v) -, ~V3(x, v) 
(~I/4(X, V) 

Consequently, we have the following equation for the spinor W(x, v): 

ieh~/g~0~qta(x, v) + dv l 0/W~(x, v) = emcW~(x, v) (3.5) 

2. The differentials dv t are quantized by first noting that since the 
neighboring points (x, v) and (x + dx, v + d r )  lie on the autoparallel curve 
of the Finsler space, the relation (3.1) between the differentials dv I and dx ~ 
holds. Therefore, the quantized differentials dot are 

df~ l = --i~hPlh~(X, v)vh~#(X) (3.6) 

and consequently the wave (field) function becomes a 'bispinor' (this nomen- 
clature is only formal and for convenience) Woa(x, v). Then the resulting 
equation for the wave (field) function W~a(x, v) for the particle (or constituen0 
in the Finsler space is given by 

ih~/~a,(x) 0~Wa,a(x, v) - ih~/~,(x)P~(x, v ) v  h 0 ~ a , ( x ,  v) 

= mcW~(x, v) (3.7) 

or, in compact form, 

ih~/~(x)(O~ - Pth~(X, V)v h O~)xIt(x, V) = m c * ( x ,  v )  (3.8) 

where it is to be remembered that the first and second operators on the lhs 
operate on the first and second indices of the bispinor ~(x, 1,), respectively. 

4. DIRAC EQUATION IN ROBERTSON-WALKER SPACE-TIME 

It is possible to separate the wave function in the Finsler space that we 
are considering, i.e., for which 

g(x) -- F(t) = exp(+_box~ (box~ n, or (1 + box~ n, x ~ = ct 

It is found that for such cases the connection coefficients P~(x, v) are 
separated as P~(x, v) = ~(t)P~(v), where 2boca(t) = F ' ( t ) /F( t ) .  Also, the 
Dirac matrices ~/~(x) for the curved space-time manifold are connected with 
the flat-space Dirac matrices ~/a through the vierbein fields V~ by the relations 
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y~(x) = V~(x)y a and ~/~(x) = V~(x)~/a (4.1) 

where V~(x) are the inverse vierbein fields, such that 

V~(x)Vb(x) = ~ (4.2) 

In the present case the vierbein fields are diagonal and the diagonal elements 
are given by 

V~(x) = (F(t))  - v z  = e(t) (say) (4.3) 

Equation (3.8) then becomes 

ihe(t)~r - ~(t)Plhr h 0;)W(x, v )  -- m e W ( x ,  v )  (4.4) 

Either the separable wave function W(x, v) may be regarded as a matrix 
product of W(x) and Q~r(v), i.e., 

'Wl(X)\ 
aI't2(X)| / 

W(x, v) = W(x)~r(v) = W3(x)lO,0'), Q~2(v), Q~3(v), 04~v) (4.5) 
atf4(X) / ~ 

[i.e., W0(x, v) = W i ( x ) O j ( v ) ]  

or the bispinor W(x, v) can be viewed as the direct product of two spinors 
W(x) and O(v), i.e., 

W(x, v) = W(x) | Q~(v) (4.6) 

In De (1991) we derived the Dirac equation in RW space-time (and also 
the usual Dirac equation of the Minkowski flat space) for the wave function 
W(x), and thus W(x) represents the usual spinor for the macrospaces. Also, 
a class of solutions of the equation for O(v) which are homogeneous of 
degree zero in the directional variables has been obtained together with a 
mass relation as a byproduct. This relation connects the mass of the particle 
with a parameter in the metric of the underlying manifold. We point out that 
if ~(x, v) can be written in the separated form 

~tr V) "~- ~kI'tl(X ) ~ O(1~) Jr- ~tt2(X) ~ Oc(v) (4.7) 

where Wl(x) and WE(X) are eigenstates of ~/0 with eigenvalues + 1 and - l ,  
respectively, and O(v) and ~ ( v )  satisfy, respectively, the equations 

(4.8) 
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then ~(x,  v) satisfies the Dirac equation in the space-time conformal to the 
Minkowski flat space. It is given by 

3ihbo 
ih~l ~ 0 ~ ( x ,  v) + ~ [(t)'y~ v) 

c 
= [m + g~(t)e(t)]~(x,  v)  (4.9) 

e(t) 

Consequently, the Dirac equation for the RW space-time can be obtained by 
a pure-time transformation. Here, the additional mass term M appears as the 
constant in the process of separation of equation (4.4) and this can be consid- 
ered as a manifestation of the anisotropy of the microdomain. 

By using the vierbeins V~(X) which connect this curved space-time with 
the local inertial frame (the Minkowski flat space), we can recover the usual 
Dirac equation 

ih~l ~ 0~,~(x, v) = mc~(x ,  v)  (4.10) 

when one neglects the extremely small second terms in both the lhs and rhs 
of (4.9). Of course, one can retain the mass term M[(t)e(O, which has signifi- 
cance in the early universe. In fact, in De (1993a) we considered the matter 
and entropy productions in the very early universe regarded as a thermody- 
namically open system by incorporating this mass term. Also, quantum cre- 
ation of matter was considered in De (1993b). The calculated values of the 
created matter and entropy and also the photon-to-baryon number ratio in 
the present universe have been found to be in good agreement with the 
observational data. For particles which are not constituents in the hadron 
configuration the "v-part" wave functions O(v) and Q~c(v) have no other 
physically relevant manifestations because for such particles M :/= 0 in the field 
(wave) equation and consequently no additional quantum number appears; as 
we shall see later, the opposite holds for the case with M = 0. Actually, in 
the laboratory space-time (Minkowskian), O(v)  = f~c(v) = const (b0 ---> 0). 
Also, we may regard the "averaged" wave function with a pdf X(v), 

XIt(x) = f ~t(X, lP)X(10 d4p (4.11) 

as the wave function in Minkowski space-time. Clearly, the wave function 
�9 (x) satisfies the usual Dirac equation. Of course, one can directly find the 
Dirac equation for the Minkowski space-time from equation (4.4) with the 
following separated wave function: 

�9 (x, v) = ~(x) | O(v) (4.12) 

where f~(v) satisfies the equation 
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ih~l~Plh~(V)v h O'tO(v) = McO(v)  (4.13) 

In the hadron configuration it is assumed that M = 0 for the constituents 
and this gives rise to an "additional" quantum number for the particles, which 
can generate an internal symmetry of the hadrons. This is considered in the 
following sections. 

5. ADDITIONAL QUANTUM NUMBER IN HADRON 
CONFIGURATION 

As pointed out above, we consider the case M = 0 for the constituents 
in the hadron configuration. First, we seek a class of solutions for O(v) and 
Oc(v) which are homogeneous of degree zero. In fact, the metric tensors of 
the Finsler space and the fundamental function are homogeneous functions 
of degree zero and one, respectively, in the directional arguments. Therefore, 
one can argue that only this class of homogeneous solutions is physically 
relevant. For the Finsler space that we are considering, the equations for 
O(v)  and Oc(v) for such a type of solutions become 

ihbo ~ ~/ v t ~ + v ~ O(v )  = - M c O ( v )  + ~ O(v)  
l = 1 0"1)0 

ihbO ~ Y ~ Ov ~ + Oc(v ) = _McOC(v) _ 3ihbo 
i=l 2 OC(V) 

(5.1) 

In De (1991) we found the solutions, whose general form is as follows: 

( / ~ , / 5 , ,  ~ - i ,t v k 
k=l = - -  co b (5.2) 

3 
O(v) v/3v ~ + i ~ ~lkV k 

k=l 

where D is a complex number and cob is a four-component spinor independent 
of v. A relation between the mass M and the parameter b0 has also been 
found. It is given by 

2v/3hbo D = Mc ~ 3ihbol2 (5.3) 

[the negative and positive signs on the rhs are for O(v) and Oc(v), 
respectively]. 
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There is an option in choosing the real part of D. In our previous article, 
it was chosen as Re{D} = 0 or 1 (it is neither very large nor very small and 
thus this choice is a natural one). As mentioned above, Re{D} = 0 for 
particles within a hadron configuration and for free particles Re{D} = 1. 
The imaginary part of D is given by Im{D} = -T-x/3/4 for O(v) and 
O~(v), respectively. 

Thus, we get the relation 

2v/-3 hbo = Mc for Re{D} = 1 (5.4) 

For the universe we live in, it was shown that this relation gives rise to a 
connection between the mass ~h of the elementary particle and the Hubble 
function (De, 1991, 1993a) in the following form: 

~h = m[1 + 2etH(T)] (5.5) 

where m is the "inherent" mass of the particle and ot = 10 -23 sec. Here H(T) 
is the Hubble function expressed as a function of the cosmological time T. 
Thus, the mass of the particle is the sum of the constant inherent mass and 
an epoch-dependent mass which is very small at the present epoch (10 -41 
times the inherent mass). But this second mass term was dominant in the 
very early history of the universe, that is, in the epoch of times less than 
10 -23 sec in the big bang cosmology. 

Now, equations (5.1) for the "v-part" wave functions O(v) and Oc(v) 
of the particles in the hadron configuration become 

~_.~ ~ ( v ~  = hf~(v) 
(5.6) 

i'y. D(v  ~ v)~Jc(v) -hOe(v)/ 
.I 

where 

7 " D  = 1=1 ~ ~//y with D r = --~ ih v ~ + v t ~ (5.7) 

The components of the 3-vector -D = (D 1, D 2, D 3) satisfy the same commuta- 
tion relations that are satisfied by the "boost" generators Kj (in the usual 
coordinate representation) (Perl, 1974). In a sense this vector ~ can be 
thought of as the boost generator in the tangent space of the Finsler space. 

Now, the wave function ~(x, v), as separated above, has two parts, 
~l(X) | O(v) and at-tz(X ) ~ ~C(v). In the "rest" frame of the particle these 
two parts are related to each other as particle and antiparticle. In fact, the 
antiparticle state ~C(x, v) corresponding to a particle state with ~(x, v) = 
�9 (x) | O(v) is given by 

�9 C(x, v) = i~/2~*(x) | i~/20*(v) -- ~C(x) | Oc(v) (5.8) 
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It is evident that O(v) and Oc(v) satisfy equations (5.6). Also, the equation 
satisfied by Oc(v) =- OC(v ~ ~) is also satisfied by O(v ~ -~ ) ,  since D(v ~ - 
~) = - D ( v  ~ +~). Thus, 

OC(v ~ ~) ~ O(v ~ - ~ )  (5.9) 

It should be noted that equations (5.6) for O and Q~c are independent of the 
parameter bo (as also of M, since M = 0) and when one makes b0 ---> 0 in 
the transition from the comoving coordinates of RW space-time to the local 
inertial frame (the Minkowski flat space-time) these equations are unaffected 
and continue to hold. Now, there are two linearly independent solutions for 
the "v-part" wave function O(~) (suppressing the dependence on v ~ which 
will be irrelevant in the subsequent discussions) that satisfy the first equation 
of (5.6), which is, in the units c = h = 1, 

i T ' D O  = Q~ (5.10) 

Let us denote them by Q~(~) and ~(~).  Again, 

i~/. D = -(~/1"~2~3 . . . .  ) (5.11) 

As the three operators iT "D, 71~/2~/3, and ~ - ~  are mutually commuting, 
one can construct simultaneous eigenstates of them. Thus, we can take O 
and ~ to be the eigenstates of ~/1~/2~/3 and ~ .D. Let O and ~ be the 
eigenstates of ~/1~/2~/3 with eigenvalues + 1 and - 1, respectively. (It is easily 
seen that eigenvalues of ~/1~/2~/3 and ~ .  D are only + 1 and - 1.) As O and 

are linearly independent eigenstates, one can always make them to have 
eigenvalues + 1 and -1 ,  respectively. Therefore, we have 

~"  DO(~) = -O(~) ,  ~ -  D ~ ( ~ )  = ~(~)  (5.12) 

For the antiparticle v-part wave function that satisfies the second of equations 
(5.6) one can have two linearly independent solutions Q~(~) and ~c(~), 
where Q~: = i~/2Q~, and ~c = i~/2~.. Obviously, 

~1 ,~2 , ,~3~c (~ )  ~.~ ~ c ( ~ ) l  

= j 

,tW ,t30c(v) = 

= (5.13) 

As we have seen from the discussion leading to equation (5.9), O(v) and 
O ( - ~ )  satisfy two equ_aations (5.6) for O(~) and Oc(~), respectively, and the 
transformation v ---> - v  does not change the eigenvalues for the eigenstates 

1 2 3 "* c ''~ ~ c " *  of ~/~/~/, so we can always take O ( - v )  = ~ (v) and ~ ( - v )  = O (v) 
(with the constants of proportionality chosen to be unity without loss of 
generality). From the solutions of O and O c as given explicitly in (5.2), this 
choice can also be verified. Thus, we have 
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~ ( ~ )  i'y:~*(~) O(-v)J-*~' (5.14) 

Table I summarizes these results. Here it is emphasized that O(~) and 
~ ( - ~ )  represent particle and corresponding antiparticle states (as the v parts 
of the fields) and also these are both eigenstates of ~/t~/:~/3 with the same 
elgenvalue. Likewise, ~ (v )  and ~ ( - v )  are related as the particle and corres- 
ponding antiparticle states having the same eigenvalue of ~/1Z2~/3 s i~e  those 
are also eigenstates of it. Such a choice is necessary because v --~ - v  makes 
a particle state into an antiparticle state and vice versa but leaves ~/I~/z~/3Q~ 
= O or  ~/172"~3~ = - Q ~  unchanged. Thus, either ~l,yZ~3Q~ = Q~ or  ~/l,yZ~3Q~ 

= -Q~ can be regarded as the "constraint" on the field (wave) function. A 
similar situation arises for the Weyl two-component theory of neutrinos. The 
space reflection x --~ - ~  makes a particle or antiparticle state into a "nonphysi- 
cal state." This is because parity is violated in this theory based on the 
Minkowski space-time, which is isotropic in nature. On the contrary, the 
space-time of the present consideration is anisotropic, which is manifested 
in the transition from particle to antiparticle states or vice versa by the 
"reflection" ~ --) - ~  in the tangent space of the anisotropic Finsler space�9 

Now, it is evident from Table I that the particle and antiparticle states 
with the v-part wave functions Q~(~) and O ( - ~ )  [and also ~(~)  and ~ ( -  
v)] are elgenstates of an "internal hehclty" ~.  D, where S = �89 the internal 
spin angular momentum, with opposite eigenvalues +_ 1/2. Thus, in the hadron 
configuration the particle and antiparticle are in internal (spin) angular 
momentum states having opposite helicities. This relation between the fermion 
number and internal helicity gives rise to a preferred direction (as we cannot 
make simultaneous eigenstates for the three operators, the three mutually 
noncommuting components of S = 1~,  one has to choose one direction, say 
the 3-axis, as the preferred direction). Because of this preferred direction in 
the tangent space of the Finsler space of the microdomain, this space-time 
is manifestly anisotropic, that is, anisotropic from the physical point of view. 

Table I 

Eigenvalues Eigenvalues 
"r part" of the wave function of ~ - ~  of Tl~/2~ 3 

p .. , [ 0 ( ~ )  - 1  +1 

+1 +1 Antiparticle ~ ( _ ~ )  ~ ( v )  
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This preferred direction yields a relation between fermion number and the 
helicity (internal) states and consequently an additional conserved quantum 
number arises. This internal quantum number can generate the internal sym- 
metry of  hadrons. This is considered in the following section. 

6. I N T E R N A L  S Y M M E T R Y  OF H A D R O N S  

Let us use the following representation of the ~/-matrices: 

(0 (0 o ) } '~/1~ = ~1~ 0 ' "/5 = i'y0"~/IT2~3 = 1 

~ = o'v~ = (1, -or) ,  ~ = ~w = (1, + ~),  I~ = 0, 1, 2, 3 

(6.1) 

where ~ = (~r 1, r 2, 0 "3) are Pauli spin matrices. Now, the wave function in 
the Finsler space, ~(x ,  v), when separated as in (4.7), satisfies the Dirac 
equation in Minkowski fiat space-time (also in RW space-time). There, the 
functions ~ ( x )  and ~2(x) are eigenstates of ~/o with eigenvalues + 1 and 
-1 ,  respectively. Also, we can have two linearly independent eigenstates of 
~/0 having the same eigenvalue and therefore we have the following two sets 
of  eigenstates of  ~/o in the above representation: 

\ X l ]  ---X2 
(6.2) 

\xq 

where X1, X2, XI, and X2 are two-component semispinors. From these, one 
can form the Dirac spinors ~ l (x ,  v) and ~2(x, v) which may be related to 
each other as particle and antiparticle as follows: 

~Xl @ e(V.~) -- X2 (~ e(--P)) 
(6.3) 
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It is easily seen (cf. Table I) that ~Ifl(X, "IP) and ~f2(X, "IP) are the eigenstates 
of the internal helicity operator with eigenvalues - 1/2 and + 1/2, respectively. 

Budini (1979) suggested that one can generate isospin algebra from the 
conformal reflection group. The simplest conformally covariant spinor field 
equation postulated as an 0(4, 2) covariant equation in a pseudo-Euclidean 
manifold M 4'2 is of the form 

( F , ~ +  m)~('q) = 0 (6.4) 

where m is a constant matrix and ~(-q) is an eight-component spinor field. 
Here, the elements of the Clifford algebra F a are the basis unit vectors of 
M 4'2. In the fundamental representation where the Fa are represented by the 
8 • 8 matrices of the form 

the conformal spinors ~ can be expressed as 

= O2 (6.6) 

in which O1 and 02 are Caftan semispinors (Caftan, 1966). In this basis, 
equation (6.4) becomes equivalent in the Minkowski space M 3,1 to the cou- 
pled equations 

i~/~ 0~O1 = -mO2"] 
(6.7) 

i~/~ 0~O2 - m O l l  

Also, it is possible to obtain from (6.4) a pair of standard Dirac equations 
in the Minkowski space by a unitary transformation given by 

where 

C =  , with L =  (1 +~/5), R = ~ ( 1 - ~ / 5 )  (6.9) 

in the representation (6.1) of ~/5- The superscript D stands for the "Dirac 
basis." In this Dirac basis ~ ,  ~2 each satisfies the usual Dirac equation. 
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An important point should be noted here: the space or time reflection 
interchanges O1 and 02, but transforms ~1 and ~2 into themselves. Moreover, 
conformal reflection (inverse radius transformation) interchanges both O1 "-' 
O2 and ~1 ~ ~2- Also, ~1 and ~2 may represent physical free massive 
fermions, but O1 and O2 do not unless they are massless, as they satisfy the 
coupled equations. 

Now, Budini suggested that one can call a reflection algebra correspond- 
ingly to a reflection group an internal symmetry algebra for a given field 
theory: 

(a) If the corresponding reflection group when accompanied by the 
corresponding coordinate reflections is a covariance group for the equation 
of motion in the Minkowski space. 

(b) If it commutes with the Poincar6 Lie algebra and with the space- 
time reflection algebra. 

(c) If the transformation induced by the reflection algebra on the fields 
leaves the action of the theory invariant. 

If the reflection algebra commutes only with the Poincar6 algebra but 
does not commute with the space-time reflection algebra/-,4, the algebra may 
be termed a "restricted" internal symmetry algebra. 

Budini (1979) showed an important result in the study of the geometry 
of hadrons, that the internal symmetry algebra can be generated from the 
conformal reflection group which contains as a subgroup the Lorentz reflec- 
tion group L4 of four elements, 

L4= E,S,T, S T =  J (6.10) 

since 0(3, 1) is a subgroup of 0(4, 2). Here, E = identity, S = space 
reflection, T = time reflection, and ST = J = strong reflection. In M 4'2 space, 
coordinates are taken as 01, "q2, "q3, "q5, "q0, "q6 with the metric (+ + + + 
- - ) .  Here, the reflections 

$5: "q5 ---) "q~ = -05  / 

l /'6: x16 -~ "q~ - 0 6  
(6.11) 

correspond in the Minkowski space, the inverse radius transformation, and 
the same | J. The Abelian group 

Cp6 • E, $5, T6, $5T6 (6.12) 

is called the partial conformal reflection group and the total conformal reflec- 
tion group is given by the direct product 

C6 = Cp6 | L4 (6.13) 
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The conformal reflection group is represented in the conformal spinor space 
by the algebra U4,c, which may be called the conformal reflection algebra. 

Now, for a conformal spinor in the Dirac basis 

~ D = (  ~1 )WE 

the Lorentz reflection group L 4 when acting on the Dirac spinor t~i is isomor- 
phic to a U2 algebra whose Hermitian elements are given by the matrices 1, 
"/0, i~/0~/5, ~/5. The transformations Ss, T6, and $5T6 that act on the Dirac 
doublet of the conformal spinor ~i~ correspond to 

S5 ~ F~ ] 
/ 

T6 --) r~  ~ (6.14) 
/ 

s, r6 r 'r j 
Thus, the group Cp6 can be represented by the Lie algebra U4,c and the 
corresponding real subalgebra SUz may be obtained from the Hermitian 
elements iFs, F6, FsF6. Then it follows from (6.13) that the group C6 is 
isomorphic to the product 

U2, c @ U 2 ,  c = U4, c ( 6 . 1 5 )  

The following propositions were proved by Budini: 
1. The reflection algebra U2,c corresponding to the partial conformal 

reflection group Cp6 is an internal symmetry algebra for the conformal spinor 
doublets. For massive (but degenerate) components of the doublet, U2,~ is 
maximal. 

2. For massless conformal spinors or for a system of massive conformal 
spinors interacting at very short distances, the direct product of the partial 
conformal reflection group and the strong reflection in the Minkowski space 
generates a restricted internal symmetry algebra of order eight which can be 
put in the form U2~,L ~ U2c~. This U2~,L ~ U~,R algebra may be reduced to 
two independent SU2 algebras represented by the eight four-dimensional 
matrices L X cr~, R X cry [where L and R are given by (6.9)] acting on the 
two independent doublets of Weyl fields into which the massless conformal 
spinor or the system of the interacting massive spinors splits at short distances. 

Now, in the present formalism the conformal spinors represented by the 
doublets of Cartan semispinors might be regarded as the constituents of a 
hadron such that they are in the internal spin angular momentum state of S 
= 1/2. In fact, from the spinors as constructed in (6.3) one can regard 
($~)D to be the conformal spinor in the Dirac basis, as ~ l  and ~2 satisfy the 
usual Dirac equation. Also, it was pointed out above that xtt~ and ~2 are 
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eigenstates of an internal helicity operator with opposite eigenvalues. Since 
a four-component spinor with S z = + 1/2 and another with S z = - 1/2 represent 
constituents for the particle and antiparticle configuration, the doublet can 
be treated as an eight-component conformal spinor in the Dirac basis as in 
the approach by Budini in the generation of internal symmetry algebra. From 
this doublet in the Dirac basis one can find the conformal spinor in the 
semispinor basis through the transformation 

~s = / o i l s  = C~ D (6.16)  o2] 

where C is given by (6.9), since C 2 = 1. These four-component Cartan 
semispinors O1 and O2 satisfy the coupled equations in the Minkowski space, 
and consequently the conformal spinor ~('q) is a pseudo-Euclidean manifold 
M 4,2 satisfies equation (6.4). Thus, in the present formalism one can use the 
excellent argument made by Budini to achieve that the direct product of the 
partial conformal reflection group and strong reflection in the Minkowski 
space generates a restricted internal symmetry algebra which can be put in 
the form U2s~ ~ U2~. The elements of the algebra may be represented by 
the eight four-dimensional matrices L X cr~ and R X ~% that act on the two 
independent doublets of the Weyl fields into which the conformal spinor 
splits, and thus two independent SU2 algebras are represented by them. 
Further, the fixed internal Sz values for particle and antiparticle states give 
rise to another quantum number representing the algebra of UI. These SU2 
and Ul algebras indicate isospin and hypercharge, respectively, and conse- 
quently one can achieve a Lie group structure SU3 ---> SU2 X U~ for the internal 
symmetry of hadrons. A similar consideration was made by Bandyopadhyay 
(1989) with the assumption of internal l = 1/2 orbital angular momentum 
by introducing a preferred direction such that lz values 1/2 and - 1/2 represent 
particle and antiparticle states. There, the anisotropy is introduced through 
a magnetic monopole and in this space the internal helicity is connected with 
the fermion number with only a special choice of the value of ~ = 1/2, 
where ~ denotes the measure of anisotropy. Also, the connection between 
the internal helicity and the fermion number made by Bandyopadhyay in a 
complexified space-time is valid only for massless particles because the 
formula for the helicity operator used there does not hold when mass is 
"generated" by the imaginary part of the space-time. On the other hand, in 
the present formalism the preferred direction is a natural one and arises 
through the field (wave) equation in the Finsler space as the physical manifes- 
tation of the property of fields in this space-time below a length scale of a 
fundamental length l, where hadronic matter is extended. Here, we get an 
internal helicity operator S - D  -- �89 D for the constituents in the hadron 
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configuration. The constituents are in the internal (spin) angular momentum 
(S = �89 state, where the two opposite elgenvalues ___ 1/2 of Sz (measured 
along ~ )  represent, respectively, the constituents for the particle and antiparti- 
cle configuration. This angular momentum corresponds to a continuous group 
(the Lie group structure). Thus, instead of half-orbital angular momentum as 
postulated by Bandyopadhyay, the spin-half angular momentum plays the 
same role in a natural way in building up the group structure (SU2) instead 
of algebra, as argued excellently by Budini. Finally with the one-parameter 
group U1 from the additional conserved quantum number that arises in the 
present consideration we get a Lie group formalism for the internal symmetry 
of hadrons. 

7. CONCLUDING REMARKS 

In the analysis above we have achieved a Lie group formalism for 
the internal symmetry of hadrons regarded as extended (as composed of 
constituents) in a micro-space-time which is the space-time manifested below 
a length scale of the order of a fundamental length I. This micro-space-time 
is anisotropic and is characterized as a Finsler space as described above. 
Macrospaces like the Minkowski space-time of common experience and the 
space-time that describes the large-scale structure of the universe can be 
obtained or regarded as "averaged" space-times. The spinor field equation 
has been derived from a property of the field in this microspace and through 
space-time quantization similar to that envisaged and used by Namsrai (1985). 
In the process of the separation of the field function, a mass relation has also 
been derived as a consequence and it has been found that this relation has 
important cosmological implications. The present consideration also provides 
a consistent dynamics of strong interaction for subatomic particles (De, 
1986a,b). 

B andyopadhyay et al. (1989), in the consideration of half-orbital angular 
momentum for the constituents of hadrons, have shown that a baryonic 
multiplet corresponding to the internal symmetry group SU3 representing 
baryons with spin 1/2 can be taken to arise from a mesonic SU3 multiplet 
having spin zero with a spinorial constituent having the symmetry group Ul. 
Thus, in a sense, U1 may be regarded as a baryon-number-generating group 
and consequently one has 

SU(3)baryon C U(3) = su(a)meson @ U 1 

In this way the meson-baryon mass difference is obtained. In the present 
consideration, the internal helicity for the constituents of hadrons has been 
obtained and we have seen that this internal spin 1/2 can well replace the 
postulated half-orbital angular momentum in building up the internal symme- 
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try of hadrons. As pointed out above, this internal helicity is a natural conse- 
quence of the present Finsler space approach to hadronic matter extension. 
Again, from this concept of spin-1/2 internal angular momentum the meson- 
baryon mass difference can also be derived exactly as by Bandyopadhyay et 
al. (1989), but not with the consideration of an ad  hoc I = 1/2 internal 
angular momentum for the constituents. The relation between the fermion 
number and the internal helicity arises from the field (wave) equation of the 
field (wave) function W(x, v) in Finsler space. Also, in the macrodomain 
the field satisfies the usual Dirac equation. Thus, the field (wave) function 
represents a usual spinor and the present consideration emerges as a consistent 
space-time approach for the hadron structure and dynamics. 
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